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1 - INTRODUCTION \

- A - Statement of Problem

The problem is to measure the thrust output of a rocket engine.

During the test run, the engine is contained in a vacuum cham\:er as
shown in Figure 1.
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" The thrust output consists of a series of short pulses as shown in Fig-

ure 2,
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The thrust specifications are, approximately:
F;n s 20 pounds

AL, .

A s .5x 10-3 seconds
0% " <2 seconds
_>.

F = .005 pounds

where ? is an'equivalent” average force defined by equating the actual

- A ,
impulse to the equivalent impulse; i.e. F7 =J; Fdt = F A

« B~ General Equations
Conesider an idealized free-body diagram of the engine as ahown

hi Figure 3, x :

P(t) - F(e)

®

y

FIG. 3 |

The equation of linear momentum in the horizontal direction may be

(vrltten as: -

fF(t)dt‘ j?(f)di' a(mv), vid + a(my) ()
»J, inferna. ‘

N




where the left side is the net impulse applied to the engine and the

RSP RN S

¥

f%right side is the total chahge of momentum. The tot’\al change of mo-

\

1y
\

"'mentum is considered to have two components:

:1. Pa) (mv),igid body * the momentum change considering the en-

tire mass of the engine moving as a rigid body. \

2. A (mMV)jnternal = the change in the relative momentum of inter-
“"nal moving or vibrating elements where their momentum is taken rela-

‘tive to the rigid gc;ly motion.

When the engine is used to drive a vehicle in space, the useful
;’momentum imparted to the vehicle is just the first of the above two come- R
ponents. It is desired to obtain an indication of this momentum by means
‘iof a laboratory measurement; in which it will be possible to measure P(t)
éand s (m”rigid body experimentally. Rewriting equation (1) with the s
subsgript "Ll referring to laboratory conditions, and ''§'" to space con-

ditions, we have:

(2)

b’d’,L II){Q’I‘ﬁa lll-

IF,_H)J{- -f?}_(t).-.{t =a(m V),;y,y + 4(mv),

fF,d‘Ut- Betidt = a(mv) .y + VD ferml o (3)
’l’d«,,:

- .3..




Now consider that the resistance in space is zero (Pg(t) - 0), and that

the engine is mounted in the laboratory so that A (my) , =d{mv)

1ATCrna ﬂfdind/

and that the engines behavior (or its equivalent) is essentially the same

in the laboratory or in space so that
: T ()t [ Foctadt
then, substituting the above into equations (2) and (3) and eliminating the

engine impulse term, we have

P///Jf + a(my), A(ml’} = ;ifé;’at (4)

baly L 00./7 ,

Hence, the laboratory measurement gives a direct indication of the use-

ful momentum generated by the engine in space,

" “The internal momentum may consist of a vibration of internal com-

ponents relative to the frame., Whether or not this vibration affects the
measurements to be made, remains to be experimentally determined; but

this effect can be made negligibly small “w careful design techniques.

&

\

C General Sx tems

—t— s " com—

The problem resolves itself to the instrumentation and measurement
of the left side of equation (4); three general approaches are poss\xble. For
our initial purposes of discussion, they are presented in ideal schematic

form' the engine is taken to be resting on a frictionless surface and trans-

‘iates due to.»the’thwlfimpulse.s. It is noted, however, that torsional

. e—
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analogies exist for these cases which may be more practicable.

1. Infinitely-Rigid System
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In the above figure,

equation (4), the impulse

]

. impulse:

f Z_(t)J t

Y A S Sy S S
FI1G. 5 \

the engine is resting on a frictionless surface.

It is essentially restrained from motion so that A(my)= 0, and from

induced in the load cell equals the useful thrust

- Eduet ®

Furthermore, since A(MU).—‘\',O at a'l times during the impulse equa-

tion (5) holds at any gene

I

ric time during the impulse; which leads to,

Pt) = F(t) | (4)

Thus, for an ideally rigid system, the instantaneous force in the load cell

equals the instantaneous

value of thrusts as shown in the following figure:
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To determine the feasibility of this system, we must consider how
clo?ely a real system may approximate the ideal. The duration of a thrust
pufae is 0.5 milliseconds; th? minimum spacing between pulses is 100 mil-
liseconds, Thus, we consider the response of the system to an individual
puise. It can be shown that for the system to adequately track a rectangu-
lat; pulse, its natural frequency must be at least as high as the frequency
asgociatgd with the individual pulse duration. In this system, this means
th’;t the natural frequency of the engine~restraining rod must be at least
1600 cps. Taking the engine weight at 300 pounds, the spring constant of

the restraining rod is calculated to be about 40 x 106 pounds/inch, Con-

{
|
{

sidering a rod of length ¢ , we have (

W

4

E=—S—

A Y

e
]

so that
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For a peak pulse of 20#, and an effective length of .1" (the shortest feasible

_strain gage length) we have
—6 "”
E~ 35110 /;n
‘!}which is just at the border for ngtate-of-the-art" techaniques.

2. Infinitely-Flexible System

* ., _‘_____1
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FIG.7 \,

Here, the engine is idealized to be free of all external forces, so

e

that from equation (4)

A(mv),. .4 ==fF1£;dt 7)
body, L kse ful

Considering one pulse:

fF(t)Jt zF,,,)\:—-Zax-oao;:.-.om #3ec  (8)

Pulse

then, since /71 is constant:

L A= l—r0i0= infsec
AV = mF"’ = a;_: x.010=.0/3 —’;’:7;7 9)

-7-
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If the engine is initially at rest, the velocity after the npthe pulse will be:

V(n)=ndV=1.0137 "Ysec 00)

The velocity after 10 pulses will be:

V(0o)=.13 ""/m

which is easily measured. The distance moved depends on the spacing be-
tween pulses. In the case of 2 second spacing, the distance moved during

10 pulses (i.e. 20 seconds) is about:
: /","’

b Lg—:zo = ).3 Inches ' aln

Hence, if the pulse spacing is known, it may be more practicable to meas-
ure displacement and, by calculation, determine the momentum change and
tl;rust. Whichever is instrumented and measured, it is seen that the mea-
‘u::rements are well within the range of feasibility. Thus, this system is,

in principle, feasible.

The next step is to consider reducing this system to practice. The
p?i'oblem‘: is to provide a near-frictionless sliding surface. For reasonable
o
accuracy of measurement, the friction force should be no more than one-

t@nth of the minimum average thrust value, From Figure 2, the average

thrult has a minimum value of 0,005 pounds. |

Il
|
\




Thus, the friction force should be of the order of 0.0005 pounds; which

‘implies a coefficient of friction of:

f= ..::25 ~ 2110~ G2)

This friction factor is so small as to exclude any system based on

solid-to-solid sliding or rolling contact. Three approaches based on flu-

[

*{d film lubrication are as follows:

a. Oil film bearing: With the present state-of-the-art, it is possible to
fobtain friction factors in the order of 10-4, While ilt may be possible to

.improve this value with a very sophisticated design.\‘\this direction does

not seem to be promising.

b Air film bearing: A good bearing design may result in a friction fac-
rtor of the order of 108, However since the engine test chambéﬁ is eva-
‘cuated this leads to two problems. The first, maintaining an air film in

a vacuum, may be difficult to achieve. ’I'her Qeéond. the efflux of air from

Iy

the bearing will put additional strain on *he vaccum pumps working with the

| test chamber. Although this approach has problems associated with it, it

merits further study.

¢. Mercury bath flotations: In this approach, the entire engine is floated

in a bath of mercury as shown in figure 8,

{
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* With proper design, it seems likely that the friction can be reduced to
very low values. The detailed design, with consideration of friction,
overturning stability, effects of waves, quantity of mercury required,
etc. is beyond the scope of this report,
I ;
I 3. Intermediate-Stifiness System
|
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dilhpot. The equation of motion is:

-lo-

In this system, the engine is coupled to the ground by a spring and
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7 = Flt)-kx-cx ‘ (13)
which may be rewritten in standard form as:

x +2p r+woar= —‘%—F(t) u4)

© where
2/( ; w = l“ {)5)

It is recalled that F(t) represents a series of pulses whose spacing
may i)ary from 2 seconds to 0.10 second. The form of the solution to

i equation (14) depends on the relation between the period of natural vi-

bration of the engine-spring-dashpot system and the inter-pulse period.
' [

If the period of natural vibration is short com\pared to the inter=
pulse period, then the response of this system will approach that of the
infinitely-otiff system considered in section 1. Whereas, if the period
of natural vibration is long compared to the inter-pulse period, then the
response of this system approaches thes of the infinitely soft .yc‘\tem cone-
sidered in section 2. In between these extremes we iuve the soft or stiff
systems, which are described in more detail in Part III of this report.
However, we will state the one essential characteristic that differentiates
.} them from each other. The soft system basically integrates the pulses
until a steady state position is attained; so that it can only be expected to

work well if the inputs are essentially non-varying in amplitude or spacing

PR -11-
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and if enough time is allowable for steady conditions to be reached. On
|
the other hand the stiff systermn measures each pulse as it occurs. Thus

since it essentially responds to transient phenomena it can tolerate non-
steady or short time phenomena (even single pulse input.)

Y

11 - INTERMEDIATE STIFFNESS SYSTEMS - DETAILED INVESTIGATIONS

A - Soft System

.

i

1. Introduction

Various mechanizations exist in this general class. Among
thése are the seismic pendulum previously proposed and the inverted pen-
dﬁlum system under current consideration. Although we treat the inverted
pendulum in detail here, much of the general results apply equally well to
the seismic pendulum. The inverted penulum system is based on the tor-

e

lional analog of Figure 9 for the case of a very flexible system. Schema-

tically. it is shown in Figure 10 below'

e
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The pivot is assumed to be ideal and trictionless. In the
sactual system; The pivot will be provided by a non-slipping torsional
restoring spring. Because of the absence of relative slipping métion
;between elements, the friction torque may be almost negligible; con-

sisting of internal hysteresis of the material itself.

2. Static Analysis

As seen in Figure 2, F(t) may be considered to have an

f,:average value F . As an introduction, let us consider the steady-state

':‘deflection of this system under an applied constant force F ;i.e., at

;time‘.great enough for all transient effecte due to initial application of

this force(F) to be damped out.

;From statics:
: _ ( ‘
Fe + Wdsin s = 4 8 \\ (16)

where 96‘ s steady-state deflection of the system. 1If 95 does not

exceed about 5 or 6 degrees, sin 95 » thay be approximated by 95 .

Hence: ‘
Fe + wdos = % bs \ (7)

| = .Fe (8
Os A -wd )

Equation (18) shows that the static sensitivity may be increas-

ed by decreasing the effective spring constant A-WJ. Let us, for exama

ple, set the sensitivity so that the maximum value of }_:' (0.100 pounds)

-13-
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causes a deflection ( 95 ) of 0.10 radians (5.73°9). Taking " d " and

" :e " to be about 10 inches, we find:

- L
s JoOX]0O \ #
% — wd = Fge - " = /0 ”":J c19)
(3

while for W = 300 pounds:

e
% - 95

Thus, to get accurate results, the calibration must set the difference

. # !
+wd = )o+3002)0=30/)0 -:37 \\(\20)

between ﬁ angWJ,toua value which is a small difference of large num-
bers and maintain that calibration within close tolerances throughout the

entire test. This is generally a problem and may be expected to be trouble-

some.

The problem of maintenance of calibrations is an important
one and any specific design must be carefully evaluated and experimentally
verified before and after each test to ascertain the constancy of A-WJ to

I )

within very close tolerances, Otherwise 95 will not remain constant
but will fluctuate so that the test is difficult to interpret. Assuming that the
design is adequate, it is simpler to adjust and calibrate the system. If it
is noticed that (i- WJ) is the effective spring constant for the system and,

hence, determines the undamped natural frequency, a very effective method

of calibration results. The undamped natural vibration will have a period:

A4
b

T=2rm / L, Seconds \ (21)

4 -wWd

‘A“ -14-
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where I, is the mass moment of inertia about the pivot. To estimate

this, we have

2_..’_._..1_ + _ﬂ,_d 22)

w
Lol TRt

where the moment of inertia of a uniform cylindér of length [ was

taken for If . Taking L as 20 inches, we have:

300
IO ,z 3“ 2(29 )+—3_IT-(,0)~,00 #”7.5¢C (23)

Usiag this value in equation (21)

T=27 ’/‘L" 2~ 20 Sec. | c4)
© Thus, having selected a sensitivity of .10 radians for .100 pounds

~ average thrust, the period of undamped vibration is 20 seconds. Further,

J

'5 2
since z:-_—w—J—O( 7 this provides an experimental method of checking the

" calibration which should be quite accyrate. (

\

1

Let us examine the previous selected sensitivity to establish

. its accuracy. Let 55 be the displacement at the c.g. associated with

95 ; hence 53 z & d - Now,

\

5¢ 0,d . ~ oy
F_:’ z—= 10410 = )0 '% =,0/0 ’700,# (25)
F s

/00

SN
e

-15-
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this example. \

'Thus. since a .010 inch deflection may be measured with reasonable ac-

curacy, we see that this system can measure the average thrust within

+. 001 pounds.

In the following section, we will take the sensitivity, effective

spring constant and natural period of vibration at the‘ same value used in

|

3. Dynamic Analysis

From Figure 10, the dynamic equation of motion ic:‘\
_ ¥

) ) + ws = -E : €X'
§+216+w6 I, F(é) )
;lhere L
-< 2 A-wd
2 = I w'= - 27)

Case I - Quasi-static

Since the natural period of pendulum vibration is of the order

of 20 seconds and the pulse spacing is abot 1 or 2 seconds, it would be ex-

]:;ected that the response of the pendulum would be primarily determined by
the average value of F(f) + In the preceding section, we considered the

iteady-lt&te effect of a constant thrust, here we consider the transient ef-
fect which, with the passing of time, approaches the steady-state. In this
we will idealize the pendulum so that all variations in physical parameters
ér non=-ideal motions are excluded; although they may actually cause addi-

ﬂonal non-negligible deviations from the motions described below.

-‘6-




— !

Letting F(t‘)zF the solution of equation (26) is:

]

-pt s Sy F
ft)=e M2 Ghoos [ipit +85infwpit )+ Lo—  28)

Taking the system initially at rest, we find:

=8| 1- Le e Pl oos ([mmrt —lan" L
149 95[’1,{‘—1-‘3?9 Ctﬁ(w M t W) 9)
:where: ’
g, = Fe _ _Fe (30)
s w'L, = A-wd

"and is the same value as in equations (18). It is seen from equation (29)
.that as time increases, the transient oscillations are damped out and the

kdisplacement B(t) approaches the steady-state displacement 05

To get a quantitative picture of the transient oscillations, and
;the effects of damping, let us evaluate equation (29) for the same physical

‘* parameters selected previously. Hence, let:

I, = 100 pound inches
€ = 10 inches j
\
d = 10 inches |
A -wd = 10 inch pounds/radian
2r _ yad
T = 20 seconds or w_-—-—T =. 34 Zec

: Now, equation (28) is the solution of equation (26) only “l‘l is l\éu than

—_— “17=
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5 “ If /J equals, or is greater than, ({J , the solution of equation (26) is not

b . a damped oscillation but an asymptotic approach to 95 . Hence, let

us define /.Lcr as the value of f( which is equal to ) ; t.e.: ‘.
Py = W D)

Using the above values together with equation (30), the envelope of equa-

tion (29) is plotted for several values of damping; see Figure 11. Here

' z the displacement is in the dimensionless form of % : since F affects
) i S

" only 03 ., these curves are valid for all values of F . To aid clarity, the
oscillatory motion is shown only for one value of damping. For the other
values of damping, the curves will be of the same form but bounded by

their respective damped exponential envelopes.

Experimentally, it is desired to measure 95 to be able to de-
termine the average thrust -F. . However, it is seen that damping deter-
mines how soon the transient oscillations decay and the displacement set-
e tles down to its steady-state value. If we define the displacement error
( €& ) as the maximum deviation of @ frem 95 , using equation (29) we

. find:,

>

£=+ e 6 (32)

which decays to zero as time increases, For f = 20 seconds, equation
\
 (32) may be evaluated to give,

18- !




-pt
Y -03/4 .550 | <5506,
.33 |.10%50 40 | 140 8
47 |.200 015 | <0156

Thus, for a test reading after 20 secondy it is see

\

t{ that the damping

must be in order of one-half critical for the displacement error to be

:below ten percent.

Case 1l = Periodic Thrust Pulses

(1.e. area on F=¢ graph); see Figure 12.

\

Fig, |2
«19-
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We now consider equation (26) for the case where Fd) consists of
a periodic series of-pulses as shown in Figure 2. Since .A <¢7 we ape-

}‘ proximate each pulse with a dirac-function pulse having the same impulse

otaramy b

|
|
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To obtain M » we need the inverse transform of equation (36); it is
obtained from Table 6.2 of ""Advanced Engineering Mathematics' by

C.R. Wylie, Jr. Using the appropriate inverse transform the solution

to equation (36) may be expressed as:

Since the area under a " 5 " =pulse is unity, we may write:

A ]
Fey=F s+ 500+ Stzp)t-------) ' (33

- Then, the equation of motion, from equations (26) and (33) is:

"./

g+z,u9+w,9 ——F[J(a)+é’(7)+5(27)+--—- (34)

';? Taking the Laplace transform of both sides:

’ .
¢(5)[5 +2/«5+w]— T 7)) (35)

. where

=2 [o0)]

? hence

Pes)= {:If 5‘+3/£s+w1)( I-/e’7’) (3¢)

- 20
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s Jwrp? 2coshpu—2 cos 7 [ p*

e” ?"m[ Jarpr (4 07)1 - t '7).S}'n[f;"—-;7 f}

zwsl,yp—zcosfﬁi}?

whre
0st=oo c7<t< (c-n)7
'zf:-'(c+r)7+t ; =7=T =o

Cc = o; I’ ‘ZJ'-‘.- e==°

and C7 indicates the time at which the most recent pulse occurs.
: [

Additionally, |
A o 3
 fgquwt= £ L
- F I, Z,

The preceding limits indicate that 't and T are related as shown

\

below:

+%

(] /’?
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It is seen that the response is composed of two corﬁponents:

=4 s
R

1. a periodic oscillation at the pulse frequency, since = 7 =T <0

2. a damped oscillation at the pendulum (requéncy. since () =< t = po

_ Hence, we write: \

T 5 : - :
:(t):: (Q“).r 95)4. (55-5 ) - 95) (38)
T bs - |

-

‘ Let us evaluate this solution for the same physical parameters used be-

fore and for damping about one-third of critical (i.e., /,( = .10). Since
k
4 . the effect due to pulsing increases as the pulse frequency approaches the

pendulum frequency, we select the pulse period 7 at its maximum value

of 2 seconds,

Equation (37) has been evaluated for the above values and is plot- ;

, e
" ted in Figure 13 where(ﬂp"&)and (6”- ’)are plotted separately. For

: comparison, the quasi-static solution previously obtained is also indicated.

It is seen that the response to the pulsing is essentially the same

u
f - as to a constant force equal to the average value except for a superime-

posed oscillation at the pulse frequency.

{

Case Ill - Non-periodic Thrust Pulses

In the previous case, it was found that the response to a periodic

pulcg train {s essentially the same as to a constant force, Let us here

::.
determine the effect of non-perfodicity on the system response.
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" by S. Timoshenko.

!

For non-periodic, F(t) , the Laplace transform technique cannot

be readily used. Hence, we consider a superposition technique based on

" the Duhamel Integral as discussed in "Vibration Problems in Engineering"

It is easily shown from this integral that the displace-

" ments associated with a single impulse are superposable; if each displace-

ment is measured, in time, from the associated pulse, \

A
The effect of a single impulse, at ¢=o0 , of magnitude F may be

B

derived from the above reference to be:

6;(t) = eF / e'/‘t.fin(,/w‘—,u‘f) 33)

1 0 wa_ ":

where

F=Fu)  #-se

Since we will compare these results with the previously obtained

" ones » let us evaluate equation (39) for the values used before:

- - w s 314

Iug.xo

Iol 100
€ = 10

Hence:

B;(t) =.33 }? e “# s (Jw».__/‘; t) (49)

which is plotted in figure 14, and is a damped oscillation whose magnitude

N
depends on the impulse F .
' .23
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A\
" To investigate the effect of a variation in F » let us take F(t)

[

ol

as follows:

A
F
‘\
“A —— pane- — t— — — —-— -— ——— g e ~-—- — — —
0 2 3 r 8 0o 12 o 16 181 i 24 2@
FIG. 1S \ .
. which is almost periodic except for the occurrence of several pulses of ;!‘..;g '
-
- 50% greater amplitude. The system response is evaluated by superpos- 3 ‘
" ing the responses 04; to the separate pulses; careful attention being giv- :g :
: g
en to the phase due to non-periodic spacing. This has been done and is g ‘
plotted in Figure 16 where it is compared to the periodic case. g
. i
It is seen that irregularities in puieing can cause sizeable pertur- i

~

1” bations in the dynamic response of the pendulum. If they occur often ii
?'” © enough so that the effect of one has not decayed before another occurs,

- : ’

then getting consistent experimental results may be very difficult,

Additionally, Figure 17 presents the result of a cut-off in the pulses
after an "almost" damped displaced position has been attained. From
 this we see, additionally, that any cut-offs could lead to difficult inter-

pretation of the experiment,

wlda
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4. Pivot Buckling Considerations

Fig. 18

Consider a rigid body pivoting about point O as shown in Figure 18,
A A N
An applied impulse [ results in the reactive impulses X and Y

"lt the pivot. To determine these, write the equations of motion:

FC“K X -}—A 6d

Fe = IQA 6
_.;where: f
W ,2 |
Z,=Tgt 5 " r42)
25 \

DS,

. —n
o




!
; Solving these, we find:
o , Ee
| 46 =—z,~ (43)
[ ~AoA -
| Y =—FSinex
l X = ?Cosoc[l— }Z‘Z’J——-' Feoset i———¢]

: A
" where €' is the intersection of F with the line from the pivot through

. the center of gravity. Let us define e‘,' as the value of @’ for which

A
X s 0; hence:

Z
f=dF=drdz e

2
{
I ‘ and
%‘ A A e' ( 'v\
-
0 \
‘ Thue, eo defines the center of percussion; . if F- passes through this
1 ~
v - point (e'; e;')ﬁhin X =0. If:
b ' o a
’ e‘cé, then X >0
| i A
; e'>e°' then ¥ < ©
L — CENTER OF PERCUSION
- =
z.‘; H ! F
S ;' 'o” v
. —
§ A‘ ’ ) ,—L/‘ -.a...-.......q..- —
i - Fo RS & -1-0Y
; F : FIG, 19
«dbe




It has been proposed that the pivot for the inverted pendulum
could be obtaihed with a.“Flexure" unit as shown in Figure 19, This
unit is composed of thin éroued bands ind pivpting is v‘accomplilhed by
;heir flexing pﬁgr/lggd. The vertical band is under tension due to the
engine weight; the load in the horizontal band depends on the sign of )? .
If Q is positive, then the load in this band is tension; if ; is negative,
fhen the load will be compressive and may cause a buckling instability.
We saw before that if 2 acts below the center of percussion, then ;(\ >0
Hence. to preclude buckling, it is necessary that ? act below the center
6! percussion. The location of the center of percussion is estimated to

TSR AP

be about 3.3 inches above the center of gravity; thus, if the line of action

éf the engine thrust is below this point, the horizontal band will be in ten-

sion and perform in a proper manner,

5 « Sources of Erratic Behavior - General Discussion

In order to determine whether the ln\;erted pendulum will provide a
feliable. or even measurable, thrust measurement, it is necessary to con-
;ider the effects of small departures from ideality. This has been done in
a quantitative manner for some non-idealities in the previous sections,
Otherg exist; some of these which seem important will be discussed quali-

Gtatively in this section,

«2?a

b —
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a. Ground Motions

It is possible that the very low frequency motions that exist

outside of the present éqhipmeni. maj be transmitted through the pivot

vj and cause unsteady or erratic motion of the engine, even in the absence

| of the engine thrust. The disturbances which one would be most con-
" cerned about are those which have a low frequency component close to
f that associated with the inverted pendulum system. These low frequency

inputs arise from natural ground motions, building vibrations, beating

» phenozitaena associated with two or more closely matched inputs, equip-

ment motion, etc, Because of the verylow frequencies involved, if these
"jf'were troublesome they would be of such a low frequency as to make iso-

lation impractical. Thus, it is necessary that, if t‘\aese exist, their ame-
: \

plitudes be sufficiently small; even their amplified rﬁotions must still

have a negligible effect compared to that associated with engine thrust,

The quantitative evaluation of the importance of ground motions

on the response of this system still remains; these can be carried out on

;. either an experimental or analytical basis,

e T

b. Other Force Inputs

Because this inverted pendulum integrates and stores the ef-
. fects of erratic force inputs for a long time duration, it is essential that
. no others of comparable magnitude to that provided by the engine pulse

" act on the engine prior to or during the measuring period. As we see

28
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from Figure 16, small extraneous forces or pulses can cause quite large

disturbing motions so as to make the experimental results either difficult

to obtain and/or to interpret. \\

Inputs of this nature could arise from the reﬂeéted shock waves
as ihe discharged gas-bounces around in the vacuum chamber, from the
moiion of the gas out of the chamber as it is being evacuated, etc. The
qu#ntitative effects of these inputs for the design under consideration is
bey‘_kond the scope of this investigation but they must be carefully evalua-
tedieither analytically or experimentally to ascertain that they are negli-

gible and that the measured results are reliable.

B - Stiff System

1. Introduction

We now consider a system of mounting the engine so that its
natural frequency is much greater than the pulse frequency; the stiff

system.

2. Dynamic Analysis

This system is idealized as follows:

«29a \
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(::It is noted that the following equations will be equally valid for a torsion-

al analog to the above system.
The equations of motion are: {
5i+z/ua'r+ w’xz-;%-F(t) | (44)
;where

pef s W= \

‘iSince we require the system natural frequency much greater than the
‘pulse frequency, and full damping before subsequent pulses, we will in-

%_veatigate the system response to a single pulse, The associated input is

"shown in the following figure:

«30-
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We find the solution of equation (46) to be:

()= _E@'é'{( )= e'/‘taoswt]-'( /- e"‘“ '_Aéos Wt :-z\)] (47)
| w*

t=t For ¢5)
t~-A=o0 'for t S}\

0-=t= oo

which has the form of a decayed oscillation as follows:

;x(t)ll\
B \
N\
N
AN
l - _
, ./_\\ '''' P -
t'\// -7 ¢
~
7
s
1 . FIG, 22
s /
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. which may be readily measured, \

This will induce a force (G(¢)) in the load cell which is

Getr=2x(t) (48)

Now, it can be shown that, for ‘['m“ >)A » the maximum displace-

ment, and hence the maximum force in the ioad cell, occurs at:

A
=5t 49

Hence, from equation (47) we find

Gomay=GTE) =z(3m 2“’) Fp 0)

~ \wF,, Ffor .&Z“.’.«/ 1)

Taking: w=200m (100 N, )

/\ = 20005 Seconds o
Fm"""' 20 Pamd;
we find the maximum load cell force to be

Gy = 6.3 pounds

\
A

Using a strain measuring device instead of the above described

e

load cell we find, as with the infinitely rigid system, that

e

e )
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where 1 is the length of the flexible member.

Introducing equation (52) into (51) we have

AwFm . (
X £ \,.‘

‘. a
for small Aw . Since ‘ = Mw . we have

Emay X wﬁ f%_) (54) \

For the above parameters, taking L~ .1" we have

E pax = (53)

Evss >i00200°% %)

which is readily measured within state-of-the-art techniques.

3. Sources of Erratic Behavior - General Discussion

As with the inverted pendulum system, the reliability of the
stiff system is very dependent on the effects of small departures from
ideality. The aame sources discussed with that application will be con-

0§ide red here, ——.

a- Ground Motion

Only the higher frequency inputs will be able to disturb
this system; those of the same order of that described in the above sec-
tionl. Generally these will be well above those associated with building
;nd ground motions; instead they will come from neighboring equipment.

However, in this case because of the degree of natural damping associated

- 33-




with this system and because of the low amplitude inputs they should not

pose a problem. If they do, it will be rather simple to isolate the above

discussed system because of the relatively high frequencies under con-

sideration, ———

b. Other Force Inputs

As with the inverted pendulum these could cause a prob-

_lem. However, because of its very nature this system records only in-

stantaneous behavior as contrasted to integrated behavior of the inverted

o i e .
AN D o e

pendulum. The result is that only those forces that act almost simultan-

eously with the pulse could cause trouble. Since the nature of the engine

0,
s

7» is such that the disturbances from reflected shocks, or gas flow out of the

I

chamber occur after the pulse it is reasonable to expect that they will pre-
'S

sent no difficulty. Instead it is expected,if they exist their effect will be

LSS

as indicated in Figures 23 and 24 below.

\

r . THRUST Pff:i;r
i ERRATIC FORCES
‘ Fiweor -

1N ol

l 7
| ; o FIG. 23
[ | B FORCE INPUT ]
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In this case we only require a reasonable initial response for the first
1/4 cycle, or-approximately 1 to 2 milliseconds, in order to properly
interpret and evaluate the engine thrust, This can be compared to the
requirement on the inverted pendulum for no erratic forces for at least

10 to 20 seconds.

c. Erratic Thrust Spacing or Magnitude

Whereas this lack of uniformity could cause considerable
grratic,h.haﬂor in the inverted pendulum system, it would be of no con-
cern in the stiff system. This follows because the stiff system responds
and measures each pulse separately; so that an erratic pulse history has
no effect on capability of this system. Instead, this system should be able

to record and evaluate the complete pulse history as it exists.

«35.
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